Assessment Schedule - 2005

Statistics & Modelling: Calculate confidence intervals for population parameters (90642)

Evidence Statement

	Achie vement Criteria	Q	E	Evidence	e	Code	Judgement	Sufficiency
Achievement	Calculate confidence intervals for population	1	z = 1.96 9.35 ± 0.20 or $9.15 < \mu < 9.55$			A	Accept any rounding more than 1 sig. fig. for all three intervals.	Achievement: 2 × code A.
	parameters.	2	$z = 1.645$ 3.72 ± 0.09 $3.63 < \mu < 3.81$			A	Accept intervals written in equivalent forms.	
		3(a)	z = 1.96 p = 0.663 leading to 0.663 ± 0.095 or 0.568 < π < 0.758			A		
Achievement with Merit	Demonstrate an understanding of confidence intervals.	3(b)	Eg: There is a 95% probability that the interval contains the population proportion, that in the long term 95% of such intervals will contain the population proportion.			М	Or equivalent. Do not accept a statement that applies a probability to the population proportion (eg "There is a 95% probability that π lies in this interval").	Achievement with Merit: EITHER As for Achievement plus 2 × code M. OR 3 × code M.
		3(c)	z = 1.96 Using π as 0.663, $n = 344$ Using π as 0.5, $n = 385$			M A	Accept either approach. Must round up.	
		4(a)	z = 2.575 SE = 0.201 Interval is: 1.38 ± 0.52 or $0.86 < \mu_1 - \mu_2 < 1.90$			M A	Accept any rounding more than 1 sig. fig. for the interval. Accept intervals written in equivalent forms.	
	4(b) Results suggest that difference because to does not contain 0.			because th		M	Or equivalent.	
	Analyse	5	z = 2.576	iitaiii 0.		E M	Must be consistent with (a). Must establish, with reasoning, that a 50/30 split gives a minimum interval width. Must have calculations for 50/30 and 60/20, as well as using the results of Q4.	Achievement with Excellence: As for Merit plus code E.
Achievement with Excellence	estimates of population parameters.		$n_{\rm p} = n_{\rm s}$ $40 = 40$	SE 0.201	width 1.036			
			50 30	0.201	1.004	A (if a CI		
			60 20	0.202	1.044	found)		
			70 10	0.243	1.256		Accept any correct theoretical approach (eg use of calculus).	
Achie	Min. width is given by sampling 50 'power' batteries and 30 'super' batteries.			batteries				

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Solve straightforward problems involving probability.	Solve probability problems.	Apply probability theory.
3 × A	Achievement plus	Merit plus
	2 × M	1 × E
	or	
	3 × M	